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Abstract
We present new exact solutions of a model that was originally proposed in the
context of solitons and show that they possess features akin to Abrikosov’s
solution of the Ginzburg–Landau equations.

PACS numbers: 74.20.-z, 02.30.-f, 05.45.Yv, 74.60.Ec

We present here, in the static limit, new exact solutions of a model [1] defined by equations

σ ′′ = −σ + σ 3 + dρ2σ

ρ ′′ = fρ + λρ3 + dρ(σ 2 − 1)
(1)

where a prime denotes a derivative with respect to x, σ and ρ are real scalar fields and f , λ
and d are parameters. Further, we draw attention to the possible use of these solutions in the
domain of superconductivity: this is done by showing that for appropriately chosen values
of the parameters of the model, at least one of these solutions is akin to Abrikosov’s classic
solution [2] of the Ginzburg–Landau equations [3].

The backdrop of the model is as follows. The model was proposed [1] at a time when it
seemed rather attractive to think of an elementary particle as a soliton, leading one to hope
that solitons would pervade much of physics. This naturally led to a study of coupled field
theories that admitted more than one soliton solution and enabled one, among other things,
to study the nature of forces operative between solitons. More specifically, from the same
vantage point, a study of the structure of soliton theories with some internal symmetry was a
step forward, and it is this consideration that led to the proposal of the above model. Similar
investigations, carried out around the same time that the model was proposed, may also be
found in [4,5] where it is pointed out that the existence of a conserved charge in such theories
can provide a non-topological stability mechanism for the soliton solutions. The search for
soliton solutions in the physical world also led one to investigate similarly coupled theories in
three space dimensions [5].
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The new solutions of set (1) are in terms of Jacobian elliptic functions (JEFs). They
hold without any constraints on the parameters λ, f and d, and are therefore the most general
solutions of the set. Since an elliptic function is a doubly periodic meromorphic function, the
translation of its primitive cell in the Argand diagram generates a lattice that is reminiscent of
the lattice associated with Abrikosov’s solution [2] of the Ginzburg–Landau equations [3] of
superconductivity. The correspondence between our solutions and Abrikosov’s mixed state is
sharpened below.

Let us begin by noting that, at the time of their proposal, no exact solutions of (1) were
given. A solution, without derivation, was given in [6]:

σ(x) = tanh(
√
f x)

ρ(x) = (1 − 2f )1/2sech(
√
f x)

(2)

which is valid for λ = d = 1. This led to a study aimed at finding solutions of set (1), and sets
similar to it, in a systematic manner and resulted in a method that was called the method of trial
orbits [7]. Thus, three different sets of solutions for the above equations were found, valid for
different constraints among the parameters of the model. These solutions include topological
as well as non-topological solitons, and yield the solutions given by (2) as a special case.
Subsequently, based on a virial theorem for solitons [5], another method of finding solutions
of (1) was given in [8], leading to an enlargement of the set of solutions already known.

We turn now to derivation of the new solutions. Taking into account the structure of (1),
and noting that [9]

(d2/du2)snn(u, k) = n(n − 1)snn−2(u, k) − n2(1 + k2)snn(u, k) + n(n + 1)k2snn+2(u, k)

(3)

(11 similar relations hold for the remaining JEFs), we are led to the following ansatz as a
solution-set:

σ(x) = Asn(αx, k) ρ(x) = Bcn(αx, k). (4)

Equations (4) and (1) imply

f − d + A2d = α2(2k2 − 1)
λB2 − A2d = −2α2k2

A2 − B2d = 2α2k2

B2d − 1 = −α2(k2 + 1)

(5)

which are easily solved to give

A2 = 2(λ − d)(f − d + 1)/D
B2 = 2(f − d + 1)(d − 1)/D
α2 = N/D

k2 = [2(d − f − 1) + λ(f − d + 1)]/N

(6)

where

D = d(d − 2) + λ(3 − 2d) and

N = d(d − 2)(d − f ) − λ(d + f − 2).

Before we discuss this solution further, let us note that the 12 JEFs can be divided into
four families of co-polar functions [10]; thus, sn, cn, and dn belong to one family, cd, sd, and
nd to another family, and so on. The general nature of relation (3) then suggests that any two
different functions from the same co-polar family should solve equations (1), which is indeed
found to be so. Thus,

σ(x) = Csn(βx, k′) ρ(x) = Ddn(βx, k′) (7)
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are also solutions of (1), with C, D, β, and k′ given by expressions similar to those in (6). Let
us quote here a result from the cd, sd, and nd family; for

σ(x) = A1cd(α1x, k1) ρ(x) = B1sd(α1x, k1) (8)

we have

A2
1 = 2(−f λ − λ − d2 + dλ + d + f d)/D1

B2
1 = 2(f λ − 2f 2λd + 2f 2λ − 3f dλ + d2 − 2f d − λ − 2f 2d

+ 2f 2d2 − 3f d3 + 2λf d2 + d4 − 2d3 + 2dλ − λd2 + 5f d2)/N1D1

α2
1 = N1/D1

k2
1 = (f d2 − f λ − λ + d2 + dλ − d3)/D1

(9)

where

D1 = (−3λ + 2d − d2 + 2dλ) and

N1 = (f λ − 2λ + 2d2 − 2f d + dλ − d3 + f d2).

The periodicities of the above solutions are calculable from the values of the parameters
k, k′, or k1 which, without loss of generality, can be assumed to be real and to lie between zero
and unity because of relations such as [11]

sn(u, ik) = [1/(1 + k2)1/2]sd[u(1 + k2)1/2, k/(1 + k2)1/2] and

sn(u, k) = (1/k)sn(ku, 1/k).
(10)

It follows from (10) that the solution-sets of (1) in terms of JEFs are not independent:
a sn–cn pair solution can be converted into a sn–dn pair solution when k > 1, to a sd–cd
pair solution when k is pure imaginary (and so on), with a definite relationship between the
arguments and the parameters of the two pairs. It also follows from (10) that the periods of
any solution-set are real [10].

We note that the solution corresponding to type-B orbit in [7] is obtainable from our
approach by simply choosing A = 1 in the ansatz of (4). The set (5) now has only three
unknowns; it follows that the parameters λ, d and f cannot all be independent. Solving the
set for B, α, k and λ, we now obtain

B2 = (1 − 2f )/d
α2 = f

k2 = 1

λ = d(2f − d)/(2f − 1)

(11)

and since sn = tanh, and cn = sech when k2 = 1, our ansatz reduces to the solutions given
in equations (12) of [7]; further specialization to the case λ = d = 1 then yields the solutions
given in (2), as already noted. There are two further properties of the solution-set (4) that
are particularly interesting: (a) as k2 tends to zero, the functions sn and cn tend to sine and
cosine respectively, and (b) all through their domain of definition, these functions remain ‘out
of phase’, i.e. sn (or tanh or sine) has its maximum value when cn (or sech or cosine) has its
minimum value.

Let us now draw attention to the most important features of a type-II superconductor in
a magnetic field, features that were unravelled through an approximate solution of Ginzburg–
Landau equations [3] obtained by Abrikosov [2] in his monumental work. These are: (a) there
are two critical magnetic fields, Hc1 and Hc2 (Hc1 < Hc2) for such a superconductor,
apart from the usual thermodynamic critical field. (b) When the magnetic field, H , exceeds
Hc2, the superconductor behaves as a normal metal. (c) When H is less than Hc1,
the superconductor behaves as a type-I superconductor (exhibits perfect Meissner effect;
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equivalently, the Ginzburg–Landau order parameter becomes unity). (d) ForHc1 < H < Hc2,
the superconductor assumes a state that is a fine-scale mixture (mixed state) of superconducting
and normal regions. The overall arrangement of these regions has the structure of a doubly
periodic lattice in which the vortices of superconducting electrons enclose normal regions.
(e) The vortices become sparser as one proceeds from Hc2 to Hc1, and (f) the order parameter
and the magnetic field are out of phase, in the sense that magnetic field is least when the order
parameter has its maximum value.

Considerations of the two preceding paragraphs suggest that the solution-set of
(σ, ρ)-model given in (4) might embody the essence of the mixed state. For further exploration,
we need the explicit form of Ginzburg–Landau equations [3] written in terms of a function
F(x) and the vector potential A(x, y) defined as

ψ(x, y) = eikyF (x)

A(x, y) = A(x, y)j.

These lead to

(1/χ2)F ′′ = u2F − F + F 3

u′′ = uF 2 (12)

where

u = (A − k/χ).

These equations are exact. The well-known classic solution of an approximate form of
these equations is in terms of a theta-function and is given by [2]

ψ(x, y) = const × exp(−χ2x2)θ3(v, τ ) (13)

where

v = iχ(x + iy)/
√
(2π)

τ = i

and the notation used is that of [11]. In figure 1, we have given a plot of |ψ |2 for χ = 7.5 for
−0.34 � x, y � 0.34, the step size being approximately 0.02. The value of χ determines the
periodicities of the function; changing it does not change the basic features of the plot. The
value chosen here is for numerical convenience later. Figure 1 is, of course, similar to the one
given in Abrikosov’s original paper [2] (where χ is not specified).

We now observe that set (1) goes over to set (12) if

d = 1/χ2 f = d λ = 0 σ = F

ρ = χu x = χx d/dx = (1/χ) d/dx.
(14)

Indeed, these replacements cause N to become equal to zero, whence k2 becomes infinite
(see (6)). We now choose to explore the nature of solutions of set (1) for λ not exactly equal
to zero, but close to it.

For values of χ and λ close to 7.5 and zero respectively, one may be led to six different
cases: α either real or imaginary, for each of which m(= k2) can lie between zero and one, be
greater than one, or be negative. We report here the findings for one of these cases, namely
imaginary α and 0 � m � 1. Choosing χ = 7.5 and λ = 0.003, (6) and (14) yield

A = 1.059 158 α = 0.472 957i m = 0.455 421 d = f = 0.017 778.
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Figure 1. Abrikosov’s contour plot of |ψ(x, y)|2 for χ = 7.5, vide equation (13).

Knowing m and m1 = 1 − m, we can calculate numbers K and K1, and nomes q and q1

defined below:

K =
∫ π/2

0
dθ/(1 − m sin2 θ)1/2 = 1.818 044

K1 =
∫ π/2

0
dθ/(1 − m1 sin2 θ)1/2 = 1.893 805

q = exp(−πK1/K) = 0.037 911

q1 = exp(−πK/K1) = 0.049 001.

We now let x → z = x + iy in (4) and, using an appropriate formula [10] for elliptic
function of a complex argument, separate out the real and imaginary parts of σ(z):

σ(z) = A(s1d2 + ic1d1s2c2)/(c
2
2 + ms2

1s
2
2 ) (15)

where

s1 = sn(−βχy,m)

s2 = sn(βχx,m1), (β = |α|)
and c1, c2 and d1, d2 denote cn and dn functions respectively, with the same arguments and
parameters as for s1 and s2. One may now evaluate the right-hand side of (15) by employing
expansions of the elliptic functions in terms of trigonometric functions [10]; alternately, one
may use relations between elliptic functions and theta functions and employ the expansions
for the latter functions (which also involve trigonometric functions, but are more rapidly
convergent). For computational convenience we have chosen here to follow the second option
after verifying that the first option gives the same results.

It is straightforward to show that, in terms of theta functions [10], (15) yields

σ(z) = A(m1/m)1/2[Num/Den] (16)

where

Num = θ1(s)θ3(u)θ4(s)θ4(u) + iθ1(u)θ2(s)θ2(u)θ2(s)

Den = [θ2(u)θ4(s)]
2 + [θ1(s)θ1(u)]

2
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Figure 2. Contour plot of |σ(z)|2 for χ = 7.5 and
λ = 0.003, vide equation (16). For details of contours
between the vortices, see figure 3.

Figure 3. Contour plot of |σ(z)|2 for χ = 7.5 and
λ = 0.003 with details of contours between the vortices.

where

θ1(s) = 2
∑

(−1)n+1q(n−0.5)∧2 sin((2n − 1)s)

θ2(s) = 2
∑

q(n−0.5)∧2 cos((2n − 1)s)

θ3(s) = 1 + 2
∑

qn∧2 cos(2ns)

θ4(s) = 1 + 2
∑

(−1)nqn∧2 cos(2ns)(1 � n � ∞)

where

s = −(βyχ)[π/(2K)]

and theta-functions of argument u are given by similar expansions except that q is replaced by
q1 and u is given by

u = (βxχ)[π/(2K1)].

Using (16), we give plots of |σ(z)|2 in figures 2 and 3 for the numerical values given
above. Figure 2 is qualitatively similar to the plot obtained by [2] for the same value of χ (see
figure 1), except that vortices of finite height in the latter have been replaced by vortices of
infinite height in the former. This feature causes the details of contours between the vortices to
be lost, as was to be expected because Abrikosov’s solution is in terms of a θ -function (which
is analytic throughout the finite part of the z-plane [9]), whereas our solution is in terms of
JEFs (each of which is analytic except at the location of its simple poles, for example, points
congruent to iK1 or to 2K + iK1, for the sn-function) [9]). We note that figure 2 has been
drawn for −0.7 � x � 0.7 and −0.4 � y � 1.3; the step size being approximately 0.02.
In order to bring out the detailed structure of contours between the vortices, one might plot
the same function by suitably restricting the variables x and y. Figure 3 is such a plot, where
−0.4 � x � 0.4 and −0.1 � y � 1.1, the step size being 0.013.

We conclude with the following remarks:

(1) It seems appropriate to begin with a remark about solitons. Let set (1) be the description
of a system at a given time with definite values of the parameters ‘λ’, ‘d’ and ‘f ’. Then,
we have shown here that the general solution of the set is in terms of JEFs the parameters
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(m = k2) of which depend on the values of ‘λ’, ‘d’ and ‘f ’. Further, if the system is
embedded in an environment subject to thermal/magnetic changes, then ‘λ’, ‘d’ and ‘f ’
will change, leading to changes in the values of the parameters m. Thus, a soliton solution
is seen to be a descendant of a doubly periodic solution that has lost one of its periodicities
(this happens when m = 1).

(2) We have reported here the results of the model for one of the six sets of values that α and m

can have namely, imaginary α and 0 � m � 1, pertaining to χ = 7.5 and λ = 0.003. For
the same value ofχ , ifλ is progressively reduced,m becomes negative aroundλ = 0.0001,
while α remains imaginary. The nature of plots in this case is similar to those for the case
reported here, except that periodicities of the plotted function become larger (this makes
numerical exploration a bit harder). On the other hand, if λ is progressively increased (for
the same value of χ ), α becomes real around λ = 0.012, whilem remains between 0 and 1.
This case seems to lead to doubly periodic clusters of spikes, rather than single spikes.
Each cluster here consists of a tall spike surrounded by lower spikes.

(3) Since the model studied seems to be capable of yielding a variety of doubly periodic
structures, it may be well worth a detailed study in its own right—beyond the limit in
which it reduces to the Ginzburg–Landau equations. We propose to undertake such a
study soon.
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